Archive for October, 2009

Stackelberg Pricing is Hard to Approximate within 2−ε

Author Parinya Chalermsook, Bundit Lekhanukit, Danupon Nanongkai

Download: pdfarXiv



Stackelberg Pricing Games is a two-level combinatorial pricing problem studied in the Economics, Operation Research, and Computer Science communities. In this paper, we consider the decade-old shortest path version of this problem which is the first and most studied problem in this family. The game is played on a graph (representing a network) consisting of fixed cost edges and pricable or variable cost edges. The fixed cost edges already have some fixed price (representing the competitor’s prices). Our task is to choose prices for the variable cost edges. After that, a client will buy the cheapest path from a node s to a node t, using any combination of fixed cost and variable cost edges. The goal is to maximize the revenue on variable cost edges.

In this paper, we show that the problem is hard to approximate within 2-\epsilon, improving the previous APX-hardness result by Joret [to appear in Networks]. Our technique combines the existing ideas with a new insight into the price structure and its relation to the hardness of the instances.

Update History

[v1] Oct 2, 2009 (Manuscript posted on arXiv)


Leave a Comment